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The nonequilibrium asymptotic dynamics of a model for aging in a population 
of individuals initially having a random distribution of survival rates is studied. 
The model drives itself toward a steady state, and the average age tends toward 
a well-defined value. An analytic derivation shows that the average age of the 
members of the population decays in a power law fashion with the leading term 
of order t- ~. Monte Carlo simulations agree with the analytic work, and show 
that the t-I decay is universally observed even when somatic mutations are 
introduced into the population. 
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1. INTRODUCTION 

Systems far from equilibrium exhibit many surprising features in their 
dynamics. For  example, in recent years many systems have been studied 
which organize themselves into a steady state where both spatial and 
temporal  properties exhibit power law behavior, t~ 3~ Novel ideas such 
as self-organized critically have been proposed to describe their general 
class, t 4 

There are also numerous  systems which drive themselves toward a 
steady state but where the final state does not appear to be critical in the 
usual sense. They nevertheless follow a power law in time as they approach 
the steady state. Examples of such systems are found in fields ranging from 
surface roughening and chemical kinetics to models of formation of 
distr ibutions of galactic clusters. Is-s~ 
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Another system of the latter type arises in the field of population biol- 
ogy. This is a model for aging in a population of a particular species, t9 ~ 
The model leads to a Malthusian (i.e., exponential) growth for the popula- 
tion of the form exp(rt). Here t is the time and r is a real-valued function 
of general properties of the genome. The function r is called the "fitness." 
The significance of r is that it provides a measure of the increase of the 
number of individuals having a particular genome relative to other 
members of the populaton. The general properties of the genome which 
serve as the independent variables for the fitness factor are the probabilities 
for survival of the individual from one stage of life to the next. 

A simple version of the aging model ~2~ results when only three 
discrete phases of life are assumed: infancy, juvenile, and adulthood. The 
fitness r is, in this case, a function of two independent variables: the 
survival probability J of an individual from babyhood to juvenile age and the 
survival probability A from juvenile to adulthood. Partridge and Barton ~2~ 
recently proposed coupling J and A in the form J +  .4 4 =  1. Physically, this 
condition is meant to model the hypothesis that a large amount of energy 
expended as a young individual to reach the juvenile stage of life exhausts 
its intrinsic resources so as to decrease the probability of reaching 
adulthood. Mathematically, the number of independent variables is 
reduced to one, and an optimum nontrivial fitness factor rc results. 

In the above modified version of the aging model, individuals having 
the maximum fitness factor rc will gradually become more numerous than 
those with different r values. The population as a whole tends toward a 
steady-state growth rate equal to exp(ret ). 

This paper is concerned with the approach to the steady state. The 
relevant quantity is the average age (or survival rate) of the population 
from the juvenile stage to adulthood denoted by (A(t)). It will be shown 
that the system drives itself toward the steady-state value A c by means of 
a power law in time. The mathematical framework of the model will be 
given in Section 2. The analytic derivation of the asymptotic dynamics will 
be developed in Section 3 for a broad range of physically interesting 
scenarios. Section 4 contains Monte Carlo studies of the model. Monte 
Carlo studies of the steady-state properties have been explored in the work 
of Stauffer and Jan. H3) 

2. DESCRIPTION OF THE AGING M O D E L  

Consider a species where the stage of life for a given individual is 
classified according to three distinct categories: baby, juvenile, and adult. 
When an individual is born, it is classified as a "baby" and remains so for 
one generation. A baby survives it's first generation of life with a probabil- 
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ity J. If an individual lives through it's first generation, it enters the second 
stage of life called the "juvenile" stage. If a baby does not survive, it is 
eliminated from the population. 

A juvenile lives through an additional generation with a survival 
probability A. If an individual survives it's second generation of life, it 
is classified as an "adult." If it does not survive, it is eliminated from the 
population. An adult is never allowed to survive a third generation. 

Both adults and juveniles are able to produce new offspring. The off- 
spring inherit the values of the survival probabilities J and A directly from 
their parents. The "fecundity" is defined as the average number of offspring 
born to a given individual. In general, the fecundity for the juveniles mj is 
different than that for the adults ma. The present work considers the special 
case mj = ma = 1. Babies cannot produce new offspring. 

Given that they survive childhood, the average age of individuals 
having an adult survival probability A will be 1 + A generations. By 
convention, only A is used as a measure of age rather than 1 +A. The 
interesting quantity which is studied in the present article is the value of A 
averaged over the entire population, denoted by (A >. 

If one assumes a large population so that fluctuations due to its finite 
size may be neglected, standard population dynamics can be used to solve 
the model. (12~ According to the above prescription for the model, the 
following coupled equations govern the evolution of a subset of the 
population having the same J and A values: 

a n +  I = Ajn 

j~+, =Jb,, (1) 

b,+l = J , + l  + a , + l  

Here, n is a discrete time index measured in generations. The variables 
bn, j , ,  and a, denote the number of babies, juveniles, and adults in the nth 
generation having survival probabilities J and A. The fecundities for both 
juveniles and adults have been set equal to one. 

A solution of the above equations is 

an = ao ern 

J,, =Jo ern (2) 

b,  = bo er" 

where the fitness r is given by (t2~ 

r = l n  + ~  1 + 4 - ~ )  J (3) 
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and the constant factors are 

ao = �89 + A)  

_~ = �89 ~ + A)  (4) 

bo = No(J, A )/2 

The function No = No(J, A ) is the initial number of individuals in the 
population with survival probabilities J and A. 

Partridge and Barton 1~2~ have assumed an additional coupling 
between the survival probabilities: J + A 4 =  1. As mentioned in the intro- 
duction, this coupling is meant to model the idea that a high survival prob- 
ability J implies that individuals must use up intrinsic biological resources 
to ensure a good chance of reaching the juvenile stage of life, and that as 
a result the probability of reaching adulthood is decreased. The condition 
reduces the number of independent variables to one, which is chosen as J 
for the rest of the present work. The fitness factor r then has a nontrivial 
maximum value rc for some Jc where 0 < Jc < 1. The individuals having a 
survival probability Jc will eventually dominate the population, so that the 
average adult survival probability will tend toward the steady-state value 
Ac = (1 - jr 

In addition, two types of mutations are allowed in the population. The 
first type is called a "somatic" mutation. This mutation affects the survival 
of an individual, but it is not passed on to any of the individual's offspring. 
It is a model for external influences such as background radiation which 
can lead to early death through the possibility of cancer or other diseases. 
The resistance of an individual to somatic mutations is given by the 
magnitude of J and A. The mutations are modeled by effective survival 
probabilities given by 

Jen = J exp( - eq:) 

Aerr= A exp ( - eqa )  
(5) 

Here, e is an external parameter taken to be small. The variables % 
and qa are the number of mutations which the individual suffers while 
trying to survive from babyhood to juvenile and from the juvenile stage to 
adulthood, respectively. 

The second type of mutation is called the "hereditary" mutation. It 
models the variation in the J values passed on to offspring by the parents. 
Mathematically, hereditary mutations are detemined by adding a quantity 
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to the survival probability from the parent so that the J value for a 
particular offspring is given by 

Joffspring = J p  . . . .  t + ec (6) 

where c is a stochastic variable and - 1  < c < + 1. 

3. THEORY FOR THE A S Y M P T O T I C  D Y N A M I C S  

It is possible to derive an analytic expression for the asymptotic 
dynamics in the case where there are neither somatic nor hereditary muta- 
tions in the population. The general features of the dynamics carry over to 
the full model where mutations are included. Consider a population where 
the J values are initially distributed according to the function fo(J)- The 
initial distribution is assumed to be reasonably smooth so that it may be 
differentiated as many times as necessary. This is mainly done to facilitate 
the analytic treatment and it is somewhat unrealistic for a finite population 
where fo(J) is not even continuous. However, the long-time behavior of the 
dynamics in simulations of the model (where the population must be finite) 
is not particularly sensitive to this fact, as will be seen in Section 4. 

Let us replace the discrete measure of time in generations n by a 
continuous time variable t. The average survival probability <A> as a 
function of t is of the form 

<A(t) ) = N(t) A(J) fo(J) e" dJ (7) 

where the normalization constant N(t) is given by 

N(t) = [f~ fo(J)e'dJ]-' (8) 

When t is large, one can use a saddle point approximation to write the 
exponential factor in a form accurate to the third power of J - J ~ :  

exp(rt ) ~ exp {[r(Jc) + l  r"(J,.)(J- J,.)2] t} 

x[l+lr"(J,.)(J-Jc)3t] (9) 

The terms r'(Jc), r"(Jc), etc., denote the derivatives of the fitness [Eq. (3)-] 
evaluated at the maximum value Jc- The limits of integration in both 
integrals of Eq. (7) may be replaced by + ~ in accordance with the same 
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approximation. The saddle point approximation used here is slightly 
different than the usual one in that fhe cubic term in (J-J~) is retained. 
This is necessary so that all terms to leading order in t emerge from the 
calculation. 

Both the initial distribution fo(J) and the function A = (1 _j),/4 may 
also be expanded around Jc- The original expression for (A(t)) then 
simplifies to a sum of integrals of the form 

f+~- x"e "X'-d., (10) 

where a = 1/2 [r"(J,.)l. The fact that r has a maximum value at J,. ensures 
that r"(J,.) <0. 

In principle, the asymptotic dynamics can be calculated from any 
smooth initial distribution. To illustrate the features of the dynamics, let 
us choose a uniform initial distribution fo(J)= Co where co is a constant. 
The resulting form for (A(t)) is then 

(A ( t ) )~A , . -  AT,+8A~r,(jc)2] +(9(t (11) 

According to this analysis, the asymptotic dynamics results in a power 
law decay for (A(t)) of order t -I  to the steady-state value Ac. The 
amplitude of the leading t - I  term will generally depend upon the initial 
distribution fo(J), but the power law itself is quite universal. It is, however, 
possible to choose fo(J) carefully so that the t - t  term vanishes leaving a 
t -  2 dependence. 

When somatic mutations are included, the values of J,. and A,. will 
change, but the power law form of the asymptotics will remain as in 
Eq. (11). Quite generally, as long as the fitness factor has a well-defined 
nontrivial maximum, the decay to steady state will go as t -~. 

Hereditary mutations, on the other hand, will change the asymptotic 
dynamics. Mathematically, the power law arises from the narrowing of the 
distribution of J values as time increases (without hereditary mutations). 
The distribution tends toward a delta function centered at J,.. If hereditary 
mutations are present, the distribution cannot become infinitely sharp, due 
to their "smearing out" effect. This means that the system will exhibit 
power law behavior until the width of the distribution is of the order of the 
size of the hereditary mutations. At that time, the power law will be cut off 
sharply, probably in an exponential fashion. Interestingly, although the 
steady-state distribution turns out to be symmetric with respect to J~, the 
asymmetry of the function A = (1 - J)~/4 will result in a steady-state value 
for A not equal to A,.. 
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4. M O N T E  CARLO S I M U L A T I O N S  

In order to explore the aging dynamics and to check the analytic work 
in the preceding section, populations governed by this Partridge-Barton 
model were simulated using the Monte Carlo technique (see, e.g., ref. 14). 
A population of individuals having a uniform initial distribution of J values 
was first generated. The simulations proceeded by going through the pop- 
ulation and updating it once every new generation. The survival of a baby 
was determined by selecting a random number and comparing it to the J 
for that particular individual. If the number was less than J, the baby 
became a juvenile, otherwise it was discarded. Similarly, a juvenile's 
survival to adulthood was determined by the comparison of a random 
number with the ,4 value for that particular juvenile. Any adults of the 
previous generation were eliminated from the population. 

After running through the population and updating the life stage of all 
individuals, new babies were introduced into the population. Every juvenile 
and adult produced an average of one baby per individual. The actual 
number of babies was determined by sampling an exponential distribution. 
The value of J assigned to each baby was inherited directly from the 
parent. If hereditary mutations were included in the simulation, the value 
of J was modified by adding to or subtracting from it a small constant 
multiplied by a random number between - 1  and + !  taken from a 
uniform distribution. 

Somatic mutations were incorporated into the simulations in the 
following manner. First, an exponential distribution was sampled to obtain 
the number of mutations q that a given individual would suffer. For babies 
trying to become juveniles, the average number of mutations u = (q j )  was 
set externally, usually to a value 10. The survival probability J for the baby 
was then reduced by a factor exp( -eq) ,  where e is a small, positive 
constant (0.014).001). When a juvenile was trying to become an adult, the 
analogous procedure was followed with the adult survival probability A. 
The average number of mutations v=  ( q , )  was typically chosen to be 
several times the average value for the babies (v = 16u), as is customary. "2~ 

The results of a simulation where the initial distribution of J values 
was chosen to be uniform and neither type of mutation was included are 
shown in Fig. 1. This is a double-logarithmic plot of the average adult 
survival rate minus the steady-state value (,4(t))-Ac versus time. The 
dashed line is the theoretical asymptotic behavior as obtained from 
Eq. (11). The agreement past about the 70th generation appears to be 
excellent. 

Figure2 shows the simulation results where both somatic and 
hereditary mutations have been included. The stationary-state value has 
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Fig. 1. 
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Average A of members in a population versus time without mutations. The dashed 
line is the theoretical asymptotic behavior as computed from Eq. (11 ). 
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Fig. 2. Average A of members in a population versus time with somatic mutations where 
t = 0.001, u = 10, and v = 160. For the hereditary mutations, e = 0.0001. The dashed line is the 
theoretical asymptotic behavior for a population without mutations. 
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Fig. 3. Average A of members  in a popula t ion  versus time. Up  to I = 2 0 ,  there are no 
mutat ions .  For  t > 20, muta t ions  are turned on with e = 0.001, u = 10, and v = 160. 
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Fig. 4. Da ta  from Fig. 3 with the t ime origin shifted to the 20th generation.  The dashed line 
is p ropor t iona l  to t-m. 
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changed noticeably. The asymptotics still give a t-~ decay to steady state, 
although the amplitude is slightly different (15-20%). The simulation was 
not run along enough to see the cutoff in the power law due to the 
hereditary mutations. 

Figure 3 shows how the average adult survival rate behaves when 
somatic mutations are suddenly introduced into the simulations at a given 
time. This could model, say, the sudden increase in mutation rates due to 
the partial degradation of the ozone layer in the upper atmosphere. The 
resulting increase in the level of ultraviolet radiation causes an increased 
incidence of somatic mutations possibly leading to malignant skin cancer. 
In Fig. 4, the same data are plotted on a double-logarithmic plot after sub- 
tracting the final steady-state value and shifting the time origin to the point 
at which the somatic mutations were introduced. The same asymptotic 
plot as in Figs. 1 and 2 is included to show a t-~ behavior. Again, the 
asymptotics show a t-~ power law decay. At large times, the data seem to 
indicate premature saturation, which is probably caused by the finite size 
of the system. 

5. D I S C U S S I O N  

The universality of the t-~ decay law in the asymptotic dynamics is 
evident in all of the simulation data. The analytic theory presented in 
Section 3 seems to capture most of the observed behavior of the model, 
even though it is an idealization of the true discrete model. The generality 
of the analytic arguments suggests that virtually any coupling between J 
and A which results in a nontrivial optimum fitness factor for 0 < J < 1 will 
produce the t - l  decay. 

In a more realistic model, the population will have additional environ- 
mental pressures so as to contain the exponential growth. For example, a 
limit in the amount of food available for consumption or a limited living 
space may cause the population to saturate to a given size. As long as the 
external pressures act in a manner which is independent of the J distribu- 
tion, this should not affect the asymptotic dynamics. The important aspects 
of the model lie in the relative differences of the survival rates of individuals 
dictated by their particular J values. Anything which causes a global non- 
discriminating reduction of the population will not affect the overall 
domination by individuals having J values close to Jc. In fact, the simula- 
tions are run in precisely this manner: when the population contains too 
many members for the computer memory to handle, the population is 
reduced by removing individuals at random. 
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NOTE A D D E D  IN PROOF 

F o r  different biological  exper iments  see E. Nieschlag,  S. Nieschlag,  
and  H. M. Behre, N a t u r e  366:215 (1993) a n d  C. K e n y o n ,  J. Chang ,  
E. Gensch ,  A. Rudner ,  a n d  R. T a b t i an g ,  N a t u r e  366:461 (1993). 
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